All order epsilon-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters
نویسندگان
چکیده
It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients of Laurent expansion is constructed. Some particular cases of Gauss hypergeometric functions are also discussed. Contents 1. Introduction 1 2. All-order ε-expansion 3 2.1 Non-zero values of the ε-dependent part 3 2.1.1 Integer values of of ε-independent parameters 4 2.1.2 Half-integer values of of ε-independent parameters 8 2.2 Zero-values of the ε-dependent part of upper parameters 10 3. Some particular cases 11 3.1 The generalized log-sine functions and their generalization 11 3.2 Special cases: all-order ε-expansion in terms of Nielsen polylogarithms 13 4. Conclusions 14 A. The Laurent expansion of Gauss hypergeometric functions with half-integer values of parameters around z = 1 15
منابع مشابه
All-Order ε-Expansion of Gauss Hypergeometric Functions with Integer and Half-Integer Values of Parameters
It is proved that the Laurent expansion of the following Gauss hypergeometric functions, are an arbitrary integer nonnegative numbers, a, b, c are an arbitrary numbers and ε is an arbitrary small parameters, are expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with polynomial coefficients. An efficient algorithm for the calculation of the higher-order coefficients o...
متن کاملGauss hypergeometric function : reduction , ε - expansion for integer / half - integer parameters and Feynman diagrams
The Gauss hypergeometric functions 2 F 1 with arbitrary values of parameters are reduced to two functions with fixed values of parameters, which differ from the original ones by integers. It is shown that in the case of integer and/or half-integer values of parameters there are only three types of algebraically independent Gauss hyperge-ometric functions. The ε-expansion of functions of one of ...
متن کاملOn the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters
We continue our study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we apply the approach of obtaining iterated solutions to the differential equations associated with hypergeometric functions to prove the following result: Theorem 1: The epsilon-expansion of a generalized hypergeome...
متن کاملHypExp 2, expanding hypergeometric functions about half-integer parameters
In this article, we describe a new algorithm for the expansion of hypergeometric functions about half-integer parameters. The implementation of this algorithm for certain classes of hypergeometric functions in the already existing Mathematica package HypExp is described. Examples of applications in Feynman diagrams with up to four loops are given. PACS:02.10.De, 02.30.Gp
متن کاملMultiple (inverse) binomial sums of arbitrary weight and depth and the all-order ε-expansion of generalized hypergeometric functions with one half-integer value of parameter
We continue the study of the construction of analytical coefficients of the εexpansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/hep-th/0612240 شماره
صفحات -
تاریخ انتشار 2006